主营产品:生活废水一体化设备、农村一体化生活污水处理成套设备
  • 技术文章ARTICLE

    您当前的位置:首页 > 技术文章 > 进水超标导致的硝化崩溃,如何解决

    进水超标导致的硝化崩溃,如何解决

    发布时间: 2021-06-10  点击次数: 1915次

    进水超标导致的硝化崩溃,如何解决

    1、崩溃初期:

    2021年3月初某晚8点出水氨氮为零点几,10点氨氮为2,12点氨氮为4,同时伴随着溶解氧飙升。

    崩溃初期措施:

    12时停止进水,开始闷曝,同时将缺氧区改变为好氧区,并投加碳酸钠补充碱度(不管碱度够不够先补充了再说)。第二天早上8点氧化沟氨氮检测值为8左右,继续闷曝,到下午4点左右,氨氮降低至4点多,心想系统慢慢恢复,且进水口水位较高,就开始缓慢进水。

    2、*崩溃期:

    进水一晚后,第二天硝化系统*崩溃,氨氮进多少出多少。整个系统内氨氮平均在20左右,进水闷曝,投加碳酸钠,24小时后氨氮基本没有变化,供气量仅为平时供气量的50%不到溶解氧高的一批。

    当时推测原因为某企业偷排的废水中带有毒性物质,抑制硝化菌的活性。为降低毒性物质的浓度,加大进水量,从而对系统内的毒性物质进行稀释,但天不遂人愿。

    后的操作:

    停水闷曝,投加碳酸钠,来水全部进入应急池(应急池可以储存2-3天的来水)。

    3、结果:

    24小时氨氮没有变化,溶解氧依然很高。36小时基本没有变化。48小时依然如此。50小时在不改变供气量的情况下,溶解氧开始降低(看到溶解氧降低后,即将崩溃的心态立马恢复正常)。

    72小时,氧化沟氨氮降低到10,开始少量进水,保持较高的溶解氧,且投加碳酸钠,进水12小时后。氨氮依然为10,然后闷曝6小时,氨氮从10将至5,再进水12小时,氨氮从5将至1以下。硝化系统自此恢复正常。

    4、后续:

    硝化系统正常后就是总氮的问题。某晚我观察到进水口来水有问题(第二天的化验数据显示当时的进水COD在2000左右,1000以上的COD持续时间大致有6个小时),肯定有企业偷排。在排查管网后开始给系统少量进水,同时加大二沉池出水回流至调节池,一方面通过回流稀释进水中的毒性物质,另一方面通过二沉池出水回流液中的硝氮(大致在20mg/L左右),在水解酸化池中反硝化去除企业偷排废水中的COD,结果,想象中的结果出现了,出水总氮从20出头降低至6,水解酸化池出水中的COD几乎没有上涨。

    硝化反应影响因素

    6.污泥负荷F/M和泥龄SRT

    生物硝化属低负荷工艺, F/M一般都在0.15 kgBOD/(kgMLVSS·d)以下 。负荷越低,硝化进行得越充分 ,NH3-N向NO3--N转化的效率就越高。有时为了使出水NH3-N非常低,甚至采用F/M为0.05kgBOD/(kgMLVSS·d)的超低负荷。与低负荷相对应,生物硝化系统的泥龄SRT一般较长,这主要是因为硝化细菌增殖速度较慢,世代期长,如果不保证足够长的SRT,硝化细菌就培养不起来,也就得不到硝化效果。实际运行中,SRT控制在多少,取决于温度等因素。但一般情况下,要得到理想的硝化效果,SRT至少应在15d以上。

    7.回流比R与水力停留时间T

    生物硝化系统的回流比一般较传统活性污泥工艺大。这主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,如果回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。生物硝化系统曝气池的水力停留时间T一般也较传统活性污泥工艺长,至少应在8h之上。这主要是因为硝化速率较有机污染物的去除速率低得多,因而需要更长的反应时间。

    8.溶解氧DO

    硝化工艺混合液的 DO应控制在2.0 mg/L,一般在2.0~3.0 mg/L之间。当DO小于2.0 mg/L时,硝化将受到抑制;当DO小于1.0 mg/L时,硝化将受到*抑制并趋于停止。生物硝化系统需维持高浓度DO,其原因是多方面的。首先,硝化细菌为专性好氧菌,无氧时即停止生命活动,不像分解有机物的细菌那样,大多数为兼性菌。其次,硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。另外,绝大多数硝化细菌包埋在污泥絮体内,只有保持混合液中较高的溶解氧浓度,才能将溶解“挤入”絮体内,便于硝化菌摄取。一般情况下,将每克NH3-N转化成NO3--N约需氧4.57g,对于典型的城市污水,生物硝化系统的实际供氧量一般较传统活性污泥工艺高50%以上,具体取决于进水中的TKN浓度。

    9.硝化速率

    生物硝化系统一个专门的工艺参数是硝化速率,系指单位重量的活性污泥每天转化的氨氮量,一般用NR表示,单位一般为gNH3-N/(gMLVSS·d)。NR值 的大小取决于活性污泥中硝化细菌所占的比例,温度等很多因素, 典型值为0.02 gNH3-N/(gMLVSS·d) ,即每克活性污泥每天大约能将0.02 gNH3-N转化成NO3--N。10.BOD5/TKN对硝化的影响

    TKN系指水中有机氮与氨氮之和。 入流污水中BOD5与TKN之比是影响硝化效果的一个重要因素。BOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率NR也就越小 ,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。城市污水的BOD 5 /TKN大约为5~6,此时活性污泥中硝化细菌的比例约为5%; 如果污水的BOD 5 /TKN增至9,则硝化菌比例将降至3%; 如果BOD 5 /TKN减至3,则硝化细菌的比例可高达9%。 其次,BOD 5 /TKN变小时,由于硝化细菌比例增大,部分会脱离污泥絮体而处于游离状态,在二沉池内不易沉淀,导致出水混浊。综上所述,BOD5/TKN太小时,虽硝化效率提高,但出水清澈度下降;而BOD5/TKN太大时,虽清澈度提高,但硝化效率下降。因而,对某一生物硝化系统来说,存在一个佳BOD5/TKN值。很多处理厂的运行实践发现,BOD5/TKN值佳范围为2~3。

    11.pH和碱度对硝化的影响

    硝化细菌对pH反应很敏感,在pH为8~9的范围内,其生物活性强,当pH<6.0或>9.6时,硝化菌的生物活性将受到抑制并趋于停止。在生物硝化系统中, 应尽量控制混合液的pH大于7.0 ,当pH<7.0时,硝化速率将明显下降。当pH<6.5时,则必须向污水中加碱。混合液pH下降的原因可能有两个,一是进水中有强酸排入,导致入流污水pH降低,因而混合液的pH也随之降低。如果无强酸排入,正常的城市污水应该是偏碱性的,即pH一般都大于7.0,此时混合液的pH则主要取决于入流污水中碱度的大小。由硝化反应方程可看出,随着NH3-N被转化成NO3--N,会产生出部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化为NO3--N约消耗7.14g碱度(以CaCO3计)。因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液pH降低至7.0以下,使硝化速率降低或受到抑制。

    12.有毒物质对硝化的影响

    某些重金属离子、络合阴离子、qinghuawu以及一些有机物质会干扰或破坏硝化细菌的正常生理活动。当这些物质在污水中的浓度较高,便会抑制生物硝化的正常运行。例如,当铅离子大于0.5mg/L、酚大于5.6mg/L、硫脲大于0.076mg/L时,硝化均会受到抑制。有趣的是,当NH3-N浓度大于200mg/L时,也会对硝化过程产生抑制,但城市污水中一般不会有如此高的NH3-N浓度。

     

产品中心 Products